p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.78C22, (C4×C8)⋊6C2, (C2×C4).57D4, Q8⋊C4⋊3C2, C42.C2⋊2C2, D4⋊C4.1C2, C4.15(C4○D4), C2.17(C4○D8), C4⋊C4.18C22, (C2×C8).68C22, C4.4D4.5C2, (C2×C4).113C23, (C2×D4).25C22, C22.109(C2×D4), (C2×Q8).21C22, C2.11(C4.4D4), SmallGroup(64,169)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.78C22
G = < a,b,c,d | a4=b4=c2=1, d2=b, ab=ba, cac=a-1b2, ad=da, cbc=b-1, bd=db, dcd-1=a2bc >
Character table of C42.78C22
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | -2i | 0 | 2i | 2i | complex lifted from C4○D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 2i | 0 | -2i | -2i | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√-2 | √-2 | √-2 | √2 | -√-2 | -√2 | √2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √-2 | -√-2 | -√-2 | -√2 | √-2 | √2 | -√2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √-2 | -√-2 | -√-2 | √2 | √-2 | -√2 | √2 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | -√-2 | -√2 | -√2 | √2 | √-2 | √2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | √-2 | -√2 | -√2 | √2 | -√-2 | √2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√-2 | √-2 | √-2 | -√2 | -√-2 | √2 | -√2 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | -√-2 | √2 | √2 | -√2 | √-2 | -√2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | √-2 | √2 | √2 | -√2 | -√-2 | -√2 | -√-2 | √-2 | complex lifted from C4○D8 |
(1 19 25 15)(2 20 26 16)(3 21 27 9)(4 22 28 10)(5 23 29 11)(6 24 30 12)(7 17 31 13)(8 18 32 14)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(2 32)(3 7)(4 30)(6 28)(8 26)(9 21)(10 16)(11 19)(12 14)(13 17)(15 23)(18 24)(20 22)(27 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,19,25,15)(2,20,26,16)(3,21,27,9)(4,22,28,10)(5,23,29,11)(6,24,30,12)(7,17,31,13)(8,18,32,14), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (2,32)(3,7)(4,30)(6,28)(8,26)(9,21)(10,16)(11,19)(12,14)(13,17)(15,23)(18,24)(20,22)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,19,25,15)(2,20,26,16)(3,21,27,9)(4,22,28,10)(5,23,29,11)(6,24,30,12)(7,17,31,13)(8,18,32,14), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (2,32)(3,7)(4,30)(6,28)(8,26)(9,21)(10,16)(11,19)(12,14)(13,17)(15,23)(18,24)(20,22)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,19,25,15),(2,20,26,16),(3,21,27,9),(4,22,28,10),(5,23,29,11),(6,24,30,12),(7,17,31,13),(8,18,32,14)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(2,32),(3,7),(4,30),(6,28),(8,26),(9,21),(10,16),(11,19),(12,14),(13,17),(15,23),(18,24),(20,22),(27,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
C42.78C22 is a maximal subgroup of
(C4×C8)⋊C4
C42.D2p: C42.355D4 C42.242D4 C42.244D4 C42.308D4 C42.260D4 C42.269D4 C42.270D4 C42.284D4 ...
C4⋊C4.D2p: C42.366C23 C42.367C23 C42.390C23 C42.391C23 C42.406C23 C42.407C23 C42.408C23 C42.409C23 ...
C42.78C22 is a maximal quotient of
C42.56Q8 C2.(C8⋊8D4) C2.(C8⋊7D4) C42⋊8C4⋊C2 (C2×Q8).109D4 C4⋊C4.Q8
C42.D2p: C42.433D4 C42.437D4 C42.264D6 C42.213D6 C42.216D6 C42.264D10 C42.213D10 C42.216D10 ...
C4⋊C4.D2p: C4⋊C4.84D4 C4⋊C4.85D4 C4⋊C4.94D4 (C2×C8).200D6 Q8⋊C4⋊S3 (C8×Dic5)⋊C2 Q8⋊Dic5⋊C2 (C8×Dic7)⋊C2 ...
Matrix representation of C42.78C22 ►in GL4(𝔽17) generated by
0 | 13 | 0 | 0 |
13 | 0 | 0 | 0 |
0 | 0 | 4 | 9 |
0 | 0 | 4 | 13 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 2 |
0 | 0 | 16 | 1 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 11 |
0 | 0 | 3 | 11 |
G:=sub<GL(4,GF(17))| [0,13,0,0,13,0,0,0,0,0,4,4,0,0,9,13],[1,0,0,0,0,1,0,0,0,0,16,16,0,0,2,1],[1,0,0,0,0,16,0,0,0,0,1,1,0,0,0,16],[0,1,0,0,1,0,0,0,0,0,0,3,0,0,11,11] >;
C42.78C22 in GAP, Magma, Sage, TeX
C_4^2._{78}C_2^2
% in TeX
G:=Group("C4^2.78C2^2");
// GroupNames label
G:=SmallGroup(64,169);
// by ID
G=gap.SmallGroup(64,169);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,295,362,50,963,117,1444,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^2=1,d^2=b,a*b=b*a,c*a*c=a^-1*b^2,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=a^2*b*c>;
// generators/relations
Export
Subgroup lattice of C42.78C22 in TeX
Character table of C42.78C22 in TeX